

Units of Measure and Conversions

Air Flow

1 CFM = 0.0283 m ³ /min (CMM)	1 CFM=1.699 m³/hr	
1 m³/min=35.31 CFM	1 m³/min = 60 m³/hr	
1 m³/min=16.67 Liter/sec	1Liter/sec=0.06 m ³ / min	
1 m ³ /hr=0.589CFM	1 m³/ hr=0.0167 m³/min	

CFM	m³/min(CMM)	m³/hr
1	0.0283	1.699
35.31	1	60
0.589	0.0167	1

Static Pressure

1Pa=0.102mmH ₂ O	1Pa=0.004inchH₂O
1 mmH ₂ O = 0.0394 inchH ₂ O	1 mmH₂O=9.81 Pa
1 inchH₂O = 249 Pa	1 inchH₂O = 25.4 mmH₂O

Inch H₂O	mm H₂O	Pa
1	25.4	249
0.0394	1	9.81
0.004	0.102	1

• The basic theory of acoustic

Sound pressure level: SPL (dBA)

$$L_P$$
=20log $\frac{\mathcal{P}}{P_0}$ (dBA).....(a) P_0 = 20 μ Pa

 P_0 the reference sound pressure of human hearing system

L_P sound pressure level

Similarity algorithm of fan noise

$$N_2 = 50\log \frac{rpm_2}{rpm_1} - N_1....$$
 (b)

 $N_{^{\it 1}}$ noise level measured at rpm 1

 N_2 noise level calculated by equation (b) at rpm 2

The equations for the relationship between distance and noise level measured at anechoic room.

$$Lp = Lw - 20log(r) - 11[dBA]....(c)$$

$$LW = 10\log(\frac{p^2}{p_0^2}) + 10\log(4\pi r^2)...(d)$$

Lp sound pressure level

Lw sound intensity level

'L' distance in meter

According to equations (c) and (d), it's very clear the noise level will reduce 6 dBA when the distance doubled.

Comparatively, the noise level will also increase 6 dBA when distance shorten by half.